Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.358
Filtrar
1.
J Biol Chem ; 300(3): 105724, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325742

RESUMO

Mammalian cells have evolved strategies to regulate gene expression when oxygen is limited. Hypoxia-inducible factors (HIF) are the major transcriptional regulators of host gene expression. We previously reported that HIFs bind and activate hepatitis B virus (HBV) DNA transcription under low oxygen conditions; however, the global cellular response to low oxygen is mediated by a family of oxygenases that work in concert with HIFs. Recent studies have identified a role for chromatin modifiers in sensing cellular oxygen and orchestrating transcriptional responses, but their role in the HBV life cycle is as yet undefined. We demonstrated that histone lysine demethylase 4 (KDM4) can restrict HBV, and pharmacological or oxygen-mediated inhibition of the demethylase increases viral RNAs derived from both episomal and integrated copies of the viral genome. Sequencing studies demonstrated that KDM4 is a major regulator of the hepatic transcriptome, which defines hepatocellular permissivity to HBV infection. We propose a model where HBV exploits cellular oxygen sensors to replicate and persist in the liver. Understanding oxygen-dependent pathways that regulate HBV infection will facilitate the development of physiologically relevant cell-based models that support efficient HBV replication.


Assuntos
Vírus da Hepatite B , Histona Desmetilases com o Domínio Jumonji , Oxigênio , Replicação Viral , Humanos , DNA Viral/genética , Genoma Viral/genética , Hepatite B/enzimologia , Hepatite B/metabolismo , Hepatite B/virologia , Vírus da Hepatite B/genética , Vírus da Hepatite B/crescimento & desenvolvimento , Vírus da Hepatite B/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Fígado/enzimologia , Fígado/metabolismo , Fígado/virologia , Oxigênio/metabolismo , Plasmídeos/genética , Transcriptoma , Replicação Viral/genética
2.
J Virol ; 98(3): e0150223, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38315015

RESUMO

Capsid assembly is critical in the hepatitis B virus (HBV) life cycle, mediated by the viral core protein. Capsid assembly is the target for new anti-viral therapeutics known as capsid assembly modulators (CAMs) of which the CAM-aberrant (CAM-A) class induces aberrant shaped core protein structures and leads to hepatocyte cell death. This study aimed to identify the mechanism of action of CAM-A modulators leading to HBV-infected hepatocyte elimination where CAM-A-mediated hepatitis B surface antigen (HBsAg) reduction was evaluated in a stable HBV replicating cell line and in AAV-HBV-transduced C57BL/6, C57BL/6 SCID, and HBV-infected chimeric mice with humanized livers. Results showed that in vivo treatment with CAM-A modulators induced pronounced reductions in hepatitis B e antigen (HBeAg) and HBsAg, associated with a transient alanine amino transferase (ALT) increase. Both HBsAg and HBeAg reductions and ALT increase were delayed in C57BL/6 SCID and chimeric mice, suggesting that adaptive immune responses may indirectly contribute. However, CD8+ T cell depletion in transduced wild-type mice did not impact antigen reduction, indicating that CD8+ T cell responses are not essential. Transient ALT elevation in AAV-HBV-transduced mice coincided with a transient increase in endoplasmic reticulum stress and apoptosis markers, followed by detection of a proliferation marker. Microarray data revealed antigen presentation pathway (major histocompatibility complex class I molecules) upregulation, overlapping with the apoptosis. Combination treatment with HBV-specific siRNA demonstrated that CAM-A-mediated HBsAg reduction is dependent on de novo core protein translation. To conclude, CAM-A treatment eradicates HBV-infected hepatocytes with high core protein levels through the induction of apoptosis, which can be a promising approach as part of a regimen to achieve functional cure. IMPORTANCE: Treatment with hepatitis B virus (HBV) capsid assembly modulators that induce the formation of aberrant HBV core protein structures (CAM-A) leads to programmed cell death, apoptosis, of HBV-infected hepatocytes and subsequent reduction of HBV antigens, which differentiates CAM-A from other CAMs. The effect is dependent on the de novo synthesis and high levels of core protein.


Assuntos
Antivirais , Apoptose , Regulação Viral da Expressão Gênica , Antígenos do Núcleo do Vírus da Hepatite B , Vírus da Hepatite B , Hepatócitos , Biossíntese de Proteínas , Animais , Camundongos , Antivirais/farmacologia , Antivirais/uso terapêutico , Apoptose/efeitos dos fármacos , Capsídeo/química , Capsídeo/classificação , Capsídeo/efeitos dos fármacos , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Hepatite B/tratamento farmacológico , Hepatite B/imunologia , Hepatite B/metabolismo , Hepatite B/virologia , Antígenos do Núcleo do Vírus da Hepatite B/biossíntese , Antígenos do Núcleo do Vírus da Hepatite B/metabolismo , Antígenos E da Hepatite B/metabolismo , Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/crescimento & desenvolvimento , Vírus da Hepatite B/imunologia , Vírus da Hepatite B/metabolismo , Vírus da Hepatite B/patogenicidade , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Hepatócitos/virologia , Camundongos Endogâmicos C57BL , Camundongos SCID , Replicação Viral , Linhagem Celular , Linfócitos T CD8-Positivos/imunologia , Apresentação de Antígeno
3.
J Virol ; 97(10): e0109023, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37787533

RESUMO

IMPORTANCE: Clinical data suggest that Hepatitis C virus (HCV) levels are generally lower in Hepatitis B virus (HBV) co-infected patients, but the mechanism is unknown. Here, we show that HBV, but not HCV, activated absent in melanoma-2. This in turn results in inflammasome-mediated cleavage of pro-IL-18, leading to an innate immune activation cascade that results in increased interferon-γ, suppressing both viruses.


Assuntos
Coinfecção , Proteínas de Ligação a DNA , Hepacivirus , Vírus da Hepatite B , Hepatite B , Hepatite C , Imunidade Inata , Humanos , Coinfecção/imunologia , Coinfecção/virologia , Proteínas de Ligação a DNA/metabolismo , Hepacivirus/imunologia , Hepatite B/complicações , Hepatite B/imunologia , Hepatite B/virologia , Vírus da Hepatite B/imunologia , Vírus da Hepatite B/fisiologia , Hepatite C/complicações , Hepatite C/imunologia , Hepatite C/virologia , Inflamassomos/metabolismo , Interferon gama/imunologia
4.
J Virol ; 97(10): e0076023, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37754759

RESUMO

IMPORTANCE: The biogenesis and clinical application of serum HBV pgRNA have been a research hotspot in recent years. This study further characterized the heterogeneity of the 3' terminus of capsid RNA by utilizing a variety of experimental systems conditionally supporting HBV genome replication and secretion, and reveal that the 3' truncation of capsid pgRNA is catalyzed by cellular ribonuclease(s) and viral RNaseH at positions after and before 3' DR1, respectively, indicating the 3' DR1 as a boundary between the encapsidated portion of pgRNA for reverse transcription and the 3' unprotected terminus, which is independent of pgRNA length and the 3' terminal sequence. Thus, our study provides new insights into the mechanism of pgRNA encapsidation and reverse transcription, as well as the optimization of serum HBV RNA diagnostics.


Assuntos
Capsídeo , Genoma Viral , Vírus da Hepatite B , RNA Viral , Replicação Viral , Capsídeo/metabolismo , Genoma Viral/genética , Hepatite B/diagnóstico , Hepatite B/virologia , Vírus da Hepatite B/genética , Vírus da Hepatite B/crescimento & desenvolvimento , Vírus da Hepatite B/metabolismo , Transcrição Reversa , Ribonuclease H/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Replicação Viral/genética
6.
J Biol Chem ; 299(9): 105151, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37567479

RESUMO

Hepatitis B virus (HBV) is a hepatotropic DNA virus that has a very compact genome. Due to this genomic density, several distinct mechanisms are used to facilitate the viral life cycle. Recently, accumulating evidence show that G-quadruplex (G4) in different viruses play essential regulatory roles in key steps of the viral life cycle. Although G4 structures in the HBV genome have been reported, their function in HBV replication remains elusive. In this study, we treated an HBV replication-competent cell line and HBV-infected cells with the G4 structure stabilizer pyridostatin (PDS) and evaluated different HBV replication markers to better understand the role played by the G4. In both models, we found PDS had no effect on viral precore RNA (pcRNA) or pre-genomic RNA (pgRNA), but treatment did increase HBeAg/HBc ELISA reads and intracellular levels of viral core/capsid protein (HBc) in a dose-dependent manner, suggesting post-transcriptional regulation. To further dissect the mechanism of G4 involvement, we used in vitro-synthesized HBV pcRNA and pgRNA. Interestingly, we found PDS treatment only enhanced HBc expression from pgRNA but not HBeAg expression from pcRNA. Our bioinformatic analysis and CD spectroscopy revealed that pgRNA harbors a conserved G4 structure. Finally, we introduced point mutations in pgRNA to disrupt its G4 structure and observed the resulting mutant failed to respond to PDS treatment and decreased HBc level in in vitro translation assay. Taken together, our data demonstrate that HBV pgRNA contains a G4 structure that plays a vital role in the regulation of viral mRNA translation.


Assuntos
Quadruplex G , Vírus da Hepatite B , Hepatite B , Humanos , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Hepatite B/virologia , Antígenos E da Hepatite B/metabolismo , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Proteínas do Core Viral/química , Proteínas do Core Viral/metabolismo , Replicação Viral/genética , Linhagem Celular , Quadruplex G/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/genética , Mutação , Aminoquinolinas/farmacologia
7.
J Biol Chem ; 299(9): 105104, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37517693

RESUMO

Many viruses undergo transient conformational change to surveil their environments for receptors and host factors. In Hepatitis B virus (HBV) infection, after the virus enters the cell, it is transported to the nucleus by interaction of the HBV capsid with an importin α/ß complex. The interaction between virus and importins is mediated by nuclear localization signals on the capsid protein's C-terminal domain (CTD). However, CTDs are located inside the capsid. In this study, we asked where does a CTD exit the capsid, are all quasi-equivalent CTDs created equal, and does the capsid structure deform to facilitate CTD egress from the capsid? Here, we used Impß as a tool to trap transiently exposed CTDs and examined this complex by cryo-electron microscopy. We examined an asymmetric reconstruction of a T = 4 icosahedral capsid and a focused reconstruction of a quasi-6-fold vertex (3.8 and 4.0 Å resolution, respectively). Both approaches showed that a subset of CTDs extended through a pore in the center of the quasi-6-fold complex. CTD egress was accompanied by enlargement of the pore and subtle changes in quaternary and tertiary structure of the quasi-6-fold. When compared to molecular dynamics simulations, structural changes were within the normal range of capsid flexibility. Although pore diameter was enlarged in the Impß-bound reconstruction, simulations indicate that CTD egress does not exclusively depend on enlarged pores. In summary, we find that HBV surveillance of its environment by transient exposure of its CTD requires only modest conformational change of the capsid.


Assuntos
Capsídeo , Vírus da Hepatite B , Humanos , beta Carioferinas , Capsídeo/química , Proteínas do Capsídeo/química , Microscopia Crioeletrônica , Hepatite B/virologia , Vírus da Hepatite B/metabolismo , Montagem de Vírus
9.
J Med Virol ; 95(6): e28879, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37314050

RESUMO

Serum samples were collected from 54 hepatitis B e antigen (HBeAg)-positive Chinese patients infected with hepatitis B virus (HBV) subgenotype B2 or C2. They were compared for transmission efficiency using same volume of samples or infectivity using same genome copy number. Adding polyethylene glycol (PEG) during inoculation did not increase infectivity of fresh samples but markedly increased infectivity following prolonged sample storage. Differentiated HepaRG cells infected without PEG produced more hepatitis B surface antigen (HBsAg) and higher HBsAg/HBeAg ratio than sodium taurocholate cotransporting polypeptide (NTCP)-reconstituted HepG2 cells infected with PEG. They better supported replication of core promoter mutant in contrast to wild-type (WT) virus by HepG2/NTCP cells. Overall, subgenotype C2 samples had higher viral load than B2 samples, and in general produced more HBeAg, HBsAg, and replicative DNA following same-volume inoculation. Precore mutant was more prevalent in subgenotype B2 and had reduced transmission efficiency. When same genome copy number of viral particles was inoculated, viral signals were not necessarily higher for three WT C2 isolates than four WT B2 isolates. Using viral particles generated from cloned HBV genome, three WT C2 isolates showed slightly reduced infectivity than three B2 isolates. In conclusion, subgenotype C2 serum samples had higher transmission efficiency than B2 isolates in association with higher viral load and lower prevalence of precore mutant, but not necessarily higher infectivity. PEG-independent infection by HBV viremic serum samples is probably attributed to a labile host factor.


Assuntos
Antígenos de Superfície da Hepatite B , Antígenos E da Hepatite B , Vírus da Hepatite B , Hepatite B , Humanos , Genótipo , Antígenos E da Hepatite B/sangue , Antígenos de Superfície da Hepatite B/sangue , Vírus da Hepatite B/genética , Polietilenoglicóis , População do Leste Asiático , Hepatite B/transmissão , Hepatite B/virologia , Células Hep G2
10.
Zhonghua Liu Xing Bing Xue Za Zhi ; 44(5): 759-764, 2023 May 10.
Artigo em Chinês | MEDLINE | ID: mdl-37221064

RESUMO

Objective: To understand the distribution of genotypes and sub-genotypes of HBV in different ethnic groups in China. Methods: The HBsAg positive samples were selected by stratified multi-stage cluster sampling from the sample base of national HBV sero-epidemiological survey in 2020 for the amplification of S gene of HBV by nested PCR. A phylogeny tree was constructed to determine the genotypes and sub-genotypes of HBV. The distribution of genotypes and sub-genotypes of HBV were analyzed comprehensively by using laboratory data and demographic data. Results: A total of 1 539 positive samples from 15 ethnic groups were successfully amplified and analyzed, and 5 genotypes (B, C, D, I and C/D) were detected. The proportion of genotype B was higher in ethnic group of Han (74.52%, 623/836), Zhuang (49.28%, 34/69), Yi (53.19%, 25/47), Miao (94.12%, 32/34), Buyi (81.48%, 22/27). The proportions of genotype C were higher in ethnic groups of Yao (70.91%, 39/55). Genotype D was the predominant genotype in Uygur (83.78%, 31/37). Genotype C/D were detected in Tibetan (92.35%,326/353). In this study, 11 cases of genotype I were detected, 8 of which were distributed in Zhuang nationality. Except for Tibetan, sub-genotype B2 accounted for more than 80.00% in genotype B in all ethnic groups. The proportions of sub-genotype C2 were higher in 8 ethnic groups, i.e. Han, Tibetan, Yi, Uygur, Mongolian, Manchu, Hui and Miao. The proportions of sub-genotype C5 were higher in ethnic groups of Zhuang (55.56%, 15/27) and Yao (84.62%, 33/39). For genotype D, sub-genotype D3 was detected in Yi ethnic group and sub-genotype D1 was detected in both Uygur and Kazak. The proportions of sub-genotype C/D1 and C/D2 in Tibetan were 43.06% (152/353) and 49.29% (174/353). For all the 11 cases of genotype I infection, only sub-genotype I1 was detected. Conclusions: Five genotypes and 15 sub-genotypes of HBV were found in 15 ethnic groups. There were significant differences in the distribution of genotypes and sub-genotypes of HBV among different ethnic groups.


Assuntos
Etnicidade , Vírus da Hepatite B , Humanos , Povo Asiático , China/epidemiologia , Genótipo , Gerbillinae , Vírus da Hepatite B/genética , Hepatite B/epidemiologia , Hepatite B/virologia
11.
Hepatol Int ; 17(2): 281-290, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36580258

RESUMO

BACKGROUND AND AIMS: Programmed cell death protein-1 (PD-1) inhibitors plus tyrosine kinase inhibitor (TKI) have dramatically improved survival of patients with advanced hepatocellular carcinoma (HCC). However, the risk of hepatitis B virus (HBV) reactivation from these antitumor medications remains unclear. METHODS: Patients receiving TKI monotherapy (TKI group) or TKI combined with PD-1 inhibitors (combination group) were included. The primary endpoint was HBV reactivation as defined by an increase in HBV DNA titer by at least 1 log (tenfold) from baseline. The secondary endpoints included tumor progression and overall survival. RESULTS: Four hundred and ninety-nine patients met the inclusion criteria, including 296 patients in the TKI group and 203 patients in the combination group. The 3-, 6- and 12-month cumulative incidence rates of HBV reactivation in the TKI group vs. combination group were 7.8%, 12.8% and 21.3% vs. 9.9%, 19.2% and 30.0%, respectively (p = 0.02). The Cox proportional hazard model indicated that combination therapy (HR 1.41, 95% CI 1.00-1.99, p = 0.05), ALT > 40 U/ml (HR 1.50, 95% CI 1.05-2.16, p = 0.03), and tumor size > 5 cm (HR 1.58, 95% CI 1.10-2.28, p = 0.01) were independent risk factors for HBV reactivation. Compared with the HBV reactivation group, the progression-free survival and overall survival of patients in the HBV non-reactivation group were significantly prolonged (p < 0.001 and p = 0.001). CONCLUSIONS: Patients who received TKI combined with PD-1 inhibitors had a greater risk for HBV reactivation, and those with HBV reactivation had a higher rate of tumor progression and shorter survival time, than those receiving TKI alone.


Assuntos
Carcinoma Hepatocelular , Hepatite B , Inibidores de Checkpoint Imunológico , Neoplasias Hepáticas , Ativação Viral , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Hepatite B/fisiopatologia , Hepatite B/virologia , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/fisiologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Estudos Retrospectivos , /uso terapêutico , Ativação Viral/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
12.
Microbiol Spectr ; 11(1): e0123522, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36519846

RESUMO

Hepatitis B virus (HBV) infection targets host restriction factors that inhibit its replication and survival. Previous studies have shown that barriers to autointegration factor1 (BANF1) inhibited the replication of herpes simplex virus and vaccinia virus by binding to phosphate backbone of dsDNA. To date, no reports are available for the interplay between BANF1 and HBV. In this study, we elucidated the mechanisms by which HBV inhibit BANF1. First, the effect of HBV on BANF1 was observed in Huh-7, Hep G2, and Hep G2.2.15 cells. Huh-7 cells were transfected with pHBV1.3 or HBx plasmids. The results showed that there was a decreased expression of BANF1 in Hep G2.2.15 cells (P ≤ 0.005) or in HBV/HBx expressing Huh-7 cells (P ≤ 0.005), whereas BANF1 overexpression decreased viral replication (P ≤ 0.05). To study whether phosphorylation/dephosphorylation of BANF1 was responsible for antiviral activity, mutants were created, and it was found that inhibition due to mutants was less significant compared to BANF1 wild type. Previous studies have shown that HBV, at least in part, could regulate the expression of host miRNAs via HBx. It was found that miR-203 expression was high in Hep G2.2.15 cells (P ≤ 0.005) compared to Hep G2 cells. Next, the effect of HBx on miR-203 expression was studied and result showed that HBx upregulated miR-203 expression (P ≤ 0.005). Overexpression of miR-203 downregulated BANF1 expression (P ≤ 0.05) and viral titer was upregulated (P ≤ 0.05), while inhibition of miR-203, reversed these changes. In conclusion, BANF1 downregulated HBV, whereas HBV inhibited BANF1, at least in part, via HBx-mediated miR-203 upregulation in hepatic cells. IMPORTANCE In this study, for the first time, we found that BANF1 inhibited HBV replication and restricted the viral load. However, as previously reported for other viruses, the results in this study showed that BAF1 phosphorylation/dephosphorylation is not involved in its antiviral activity against HBV. HBV infection inhibited the intracellular expression of BANF1, via HBx-mediated upregulation of miR-203 expression. Overexpression of miR-203 downregulated BANF1 and increased the viral titer, while inhibition of miR-203 reversed these changes. This study helped us to understand the molecular mechanisms by which HBV survives and replicates in the host cells.


Assuntos
Hepatite B , MicroRNAs , Transativadores , Proteínas Virais Reguladoras e Acessórias , Humanos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Hepatite B/genética , Hepatite B/metabolismo , Hepatite B/virologia , Vírus da Hepatite B/genética , Hepatócitos/metabolismo , Hepatócitos/virologia , MicroRNAs/genética , MicroRNAs/metabolismo , Transativadores/genética , Transativadores/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo
13.
Turk J Gastroenterol ; 34(2): 156-160, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36445058

RESUMO

BACKGROUND: The risk of hepatitis B reactivation in hepatitis B surface antigen-negative phase of hepatitis B virus-infected patients exposed to biologic agents is not clear. We aimed to investigate the reactivation rate in hepatitis B surface antigen-negative phase of hepatitis B virus-infected patients after biologic therapy. METHODS: Patients followed at gastroenterology, rheumatology, and dermatology clinics with a diagnosis of immune-mediated inflam matory diseases were screened. Immune-mediated inflammatory diseases patients exposed to biologic agents with a negative hepatitis B surface antigen and positive hepatitis B core immunoglobulin G antibody were included in the study. RESULTS: We screened 8266 immune-mediated inflammatory disease patients, and 2484 patients were identified as exposed to biologic agents. Two hundred twenty-one patients were included in the study. The mean age was 54.08 ± 11.69 years, and 115 (52.0%) patients were female. The median number of different biologic subtype use was 1 (range: 1-6). The mean biologic agent exposure time was 55 (range: 2-179) months. One hundred and fifty-two (68.8%) patients used a concomitant immunomodulatory agent, and 84 (38.0%) patients were exposed to corticosteroids during biologic use. No hepatitis B reactivation with a reverse seroconversion of hepatitis B surface antigen positivity was seen. Antiviral prophylaxis for hepatitis B was applied to 48 (21.7%) patients. Hepatitis B virus-DNA was screened in 56 (25.3%) patients prior to the biologic exposure. Two patients without antiviral prophylaxis had hepatitis B virus-DNA reactivation with a negative hepatitis B surface antigen during exposure to the biologic agent. CONCLUSION: We found 2 reactivations and no hepatitis B surface antigen seroconversion in our cohort. Antiviral prophylaxis for patients exposed to biologic agents may need to be discussed in more detail.


Assuntos
Produtos Biológicos , Antígenos de Superfície da Hepatite B , Hepatite B , Infecção Latente , Ativação Viral , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Antígenos de Superfície , Antivirais/imunologia , Antivirais/uso terapêutico , Produtos Biológicos/efeitos adversos , Produtos Biológicos/uso terapêutico , Terapia Biológica/efeitos adversos , Terapia Biológica/métodos , Hepatite B/tratamento farmacológico , Hepatite B/imunologia , Hepatite B/prevenção & controle , Hepatite B/virologia , Anticorpos Anti-Hepatite B , Antígenos de Superfície da Hepatite B/imunologia , Vírus da Hepatite B/fisiologia , Estudos Retrospectivos , Infecção Latente/etiologia , Infecção Latente/imunologia , Ativação Viral/efeitos dos fármacos , Ativação Viral/imunologia
15.
Chinese Journal of Epidemiology ; (12): 759-764, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-985558

RESUMO

Objective: To understand the distribution of genotypes and sub-genotypes of HBV in different ethnic groups in China. Methods: The HBsAg positive samples were selected by stratified multi-stage cluster sampling from the sample base of national HBV sero-epidemiological survey in 2020 for the amplification of S gene of HBV by nested PCR. A phylogeny tree was constructed to determine the genotypes and sub-genotypes of HBV. The distribution of genotypes and sub-genotypes of HBV were analyzed comprehensively by using laboratory data and demographic data. Results: A total of 1 539 positive samples from 15 ethnic groups were successfully amplified and analyzed, and 5 genotypes (B, C, D, I and C/D) were detected. The proportion of genotype B was higher in ethnic group of Han (74.52%, 623/836), Zhuang (49.28%, 34/69), Yi (53.19%, 25/47), Miao (94.12%, 32/34), Buyi (81.48%, 22/27). The proportions of genotype C were higher in ethnic groups of Yao (70.91%, 39/55). Genotype D was the predominant genotype in Uygur (83.78%, 31/37). Genotype C/D were detected in Tibetan (92.35%,326/353). In this study, 11 cases of genotype I were detected, 8 of which were distributed in Zhuang nationality. Except for Tibetan, sub-genotype B2 accounted for more than 80.00% in genotype B in all ethnic groups. The proportions of sub-genotype C2 were higher in 8 ethnic groups, i.e. Han, Tibetan, Yi, Uygur, Mongolian, Manchu, Hui and Miao. The proportions of sub-genotype C5 were higher in ethnic groups of Zhuang (55.56%, 15/27) and Yao (84.62%, 33/39). For genotype D, sub-genotype D3 was detected in Yi ethnic group and sub-genotype D1 was detected in both Uygur and Kazak. The proportions of sub-genotype C/D1 and C/D2 in Tibetan were 43.06% (152/353) and 49.29% (174/353). For all the 11 cases of genotype I infection, only sub-genotype I1 was detected. Conclusions: Five genotypes and 15 sub-genotypes of HBV were found in 15 ethnic groups. There were significant differences in the distribution of genotypes and sub-genotypes of HBV among different ethnic groups.


Assuntos
Humanos , Povo Asiático , China/epidemiologia , Etnicidade , Genótipo , Gerbillinae , Vírus da Hepatite B/genética , Hepatite B/virologia
16.
J Virol ; 96(24): e0115022, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36448800

RESUMO

Hepatitis B virus (HBV) replicates its genomic DNA by reverse transcription of an RNA intermediate, termed pregenomic RNA (pgRNA), within nucleocapsid. It had been shown that transfection of in vitro-transcribed pgRNA initiated viral replication in human hepatoma cells. We demonstrated here that viral capsids, single-stranded DNA, relaxed circular DNA (rcDNA) and covalently closed circular DNA (cccDNA) became detectable sequentially at 3, 6, 12, and 24 h post-pgRNA transfection into Huh7.5 cells. The levels of viral DNA replication intermediates and cccDNA peaked at 24 and 48 h post-pgRNA transfection, respectively. HBV surface antigen (HBsAg) became detectable in culture medium at day 4 posttransfection. Interestingly, the early robust viral DNA replication and cccDNA synthesis did not depend on the expression of HBV X protein (HBx), whereas HBsAg production was strictly dependent on viral DNA replication and expression of HBx, consistent with the essential role of HBx in the transcriptional activation of cccDNA minichromosomes. While the robust and synchronized HBV replication within 48 h post-pgRNA transfection is particularly suitable for the precise mapping of the HBV replication steps, from capsid assembly to cccDNA formation, targeted by distinct antiviral agents, the treatment of cells starting at 48 h post-pgRNA transfection allows the assessment of antiviral agents on mature nucleocapsid uncoating, cccDNA synthesis, and transcription, as well as viral RNA stability. Moreover, the pgRNA launch system could be used to readily assess the impacts of drug-resistant variants on cccDNA formation and other replication steps in the viral life cycle. IMPORTANCE Hepadnaviral pgRNA not only serves as a template for reverse transcriptional replication of viral DNA but also expresses core protein and DNA polymerase to support viral genome replication and cccDNA synthesis. Not surprisingly, cytoplasmic expression of duck hepatitis B virus pgRNA initiated viral replication leading to infectious virion secretion. However, HBV replication and antiviral mechanism were studied primarily in human hepatoma cells transiently or stably transfected with plasmid-based HBV replicons. The presence of large amounts of transfected HBV DNA or transgenes in cellular chromosomes hampered the robust analyses of HBV replication and cccDNA function. As demonstrated here, the pgRNA launch HBV replication system permits the accurate mapping of antiviral target and investigation of cccDNA biosynthesis and transcription using secreted HBsAg as a convenient quantitative marker. The effect of drug-resistant variants on viral capsid assembly, genome replication, and cccDNA biosynthesis and function can also be assessed using this system.


Assuntos
Vírus da Hepatite B , Virologia , Humanos , Antivirais/farmacologia , Replicação do DNA , DNA Circular/genética , DNA Circular/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Hepatite B/virologia , Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/fisiologia , RNA Viral/genética , RNA Viral/metabolismo , Replicação Viral , Virologia/métodos , Linhagem Celular Tumoral
17.
J Virol ; 96(16): e0058822, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35916523

RESUMO

Co-infection with hepatitis B (HBV) and human immunodeficiency virus (HIV) increases overall and liver-related mortality. In order to identify interactions between these two viruses in vivo, full-length HIV proviruses were sequenced from a cohort of HIV-HBV co-infected participants and from a cohort of HIV mono-infected participants recruited from Bangkok, Thailand, both before the initiation of antiretroviral therapy (ART) and after at least 2 years of ART. The co-infected individuals were found to have higher levels of genetically-intact HIV proviruses than did mono-infected individuals pre-therapy. In these co-infected individuals, higher levels of genetically-intact HIV proviruses or proviral genetic-diversity were also associated with higher levels of sCD14 and CXCL10, suggesting that immune activation is linked to more genetically-intact HIV proviruses. Three years of ART decreased the overall level of HIV proviruses, with fewer genetically-intact proviruses being identified in co-infected versus mono-infected individuals. However, ART increased the frequency of certain genetic defects within proviruses and the expansion of identical HIV sequences. IMPORTANCE With the increased availability and efficacy of ART, co-morbidities are now one of the leading causes of death in HIV-positive individuals. One of these co-morbidities is co-infection with HBV. However, co-infections are still relatively understudied, especially in countries where such co-infections are endemic. Furthermore, these countries have different subtypes of HIV circulating than the commonly studied HIV subtype B. We believe that our study serves this understudied niche and provides a novel approach to investigating the impact of HBV co-infection on HIV infection. We examine co-infection at the molecular level in order to investigate indirect associations between the two viruses through their interactions with the immune system. We demonstrate that increased immune inflammation and activation in HBV co-infected individuals is associated with higher HIV viremia and an increased number of genetically-intact HIV proviruses in peripheral blood cells. This leads us to hypothesize that inflammation could be a driver in the increased mortality rate of HIV-HBV co-infected individuals.


Assuntos
Coinfecção , Infecções por HIV , Hepatite B , Inflamação/virologia , Coinfecção/patologia , Coinfecção/virologia , DNA Viral/genética , Infecções por HIV/complicações , Infecções por HIV/patologia , Infecções por HIV/virologia , Hepatite B/complicações , Hepatite B/patologia , Hepatite B/virologia , Vírus da Hepatite B/fisiologia , Humanos , Provírus/genética , Tailândia/epidemiologia , Viremia/virologia
18.
J Virol ; 96(18): e0084922, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36037476

RESUMO

The existing cell culture-based methods to study hepatitis B virus (HBV) have limitations and do not allow for viral long-term passage. The aim of this study was to develop a robust in vitro long-term viral passage system with optimized cell culture conditions and a viral isolate with the ability to spread and passage. An HBV genotype A clinical isolate was subjected to multiple rounds of UV treatment and passaged in an optimized primary human hepatocyte (PHH)/human fibroblast coculture system. The passaged UV-treated virus was sequenced and further characterized. In addition, a panel of mutant viruses containing different combinations of mutations observed in this virus was investigated. The clinical isolate was passaged for 20 rounds with 21 days per round in an optimized PHH/human fibroblast coculture system while subject to UV mutagenesis. This passaged UV-mutated isolate harbored four mutations: G225A (sR24K) in the S gene, A2062T in the core gene, and two mutations G1764A and C1766T (xV131I) in the basal core promoter (BCP) region. In vitro characterization of the four mutations suggested that the two BCP mutations G1764A and C1766T contributed to the increased viral replication and viral infectivity. A robust in vitro long-term HBV viral passage system has been established by passaging a UV-treated clinical isolate in an optimized PHH/fibroblast coculture system. The two BCP mutations played a key role in the virus's ability to passage. This passage system can be used for studying the entire life cycle of HBV and has the potential for in vitro drug-resistance selection upon further optimization. IMPORTANCE The existing cell culture-based methods to study HBV have limitations and do not allow for viral long-term passage. In this study, an HBV genotype A clinical isolate was subjected to multiple rounds of UV treatment and passaged in an optimized PHH/human fibroblast coculture system. This passaged UV-mutated isolate carried four mutations across the HBV genome, and in vitro characterization of the four mutations suggested that the two basal core promoter (BCP) mutations G1764A and C1766T played a key role in the virus's ability to passage. In summary, we have developed a robust in vitro long-term HBV viral passage system by passaging an UV-treated HBV genotype A clinical isolate in an optimized PHH/human fibroblast coculture system. This passage system can be used for studying the entire life cycle of HBV and has the potential for in vitro drug-resistance selection upon further optimization.


Assuntos
Técnicas de Cocultura , Vírus da Hepatite B , Hepatite B , Virologia , DNA Viral/genética , Fibroblastos/virologia , Genótipo , Hepatite B/virologia , Vírus da Hepatite B/genética , Hepatócitos/virologia , Humanos , Mutagênese , Mutação , Virologia/métodos , Replicação Viral
19.
J Virol ; 96(15): e0071822, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35867543

RESUMO

Hepatitis B virus (HBV) core protein (HBc), the building block of the viral capsid, plays a critical role throughout the HBV life cycle. There are two highly conserved lysine residues, namely, K7 and K96, on HBc, which have been proposed to function at various stages of viral replication, potentially through lysine-specific posttranslational modifications (PTMs). Here, we substituted K7 and K96 with alanine or arginine, which would also block potential PTMs on these two lysine residues, and tested the effects of these substitutions on HBV replication and infection. We found that the two lysine residues were dispensable for all intracellular steps of HBV replication. In particular, all mutants were competent to form the covalently closed circular DNA (cccDNA) via the intracellular amplification pathway, indicating that K7 and K96, or any PTMs of these residues, were not essential for nucleocapsid uncoating, a prerequisite for cccDNA formation. Furthermore, we found that K7A and K7R mutations did not affect de novo cccDNA formation and RNA transcription during infection, indicating that K7 or any PTMs of this residue were dispensable for HBV infection. In addition, we demonstrated that the HBc K7 coding sequence (AAA), as part of the HBV polyadenylation signal UAUAAA, was indispensable for viral RNA production, implicating this cis requirement at the RNA level, instead of any function of HBc-K7, likely constrains the identity of the 7th residue of HBc. In conclusion, our results provided novel insights regarding the roles of lysine residues on HBc, and their coding sequences, in the HBV life cycle. IMPORTANCE Hepatitis B virus (HBV) infection remains a public health burden that affects 296 million individuals worldwide. HBV core protein (HBc) is involved in almost all steps in the HBV life cycle. There are two conserved lysine residues on HBc. Here, we found that neither of them is essential for HBV intracellular replication, including the formation of covalently closed circular DNA (cccDNA), the molecular basis for establishing and sustaining the HBV infection. However, K96 is critical for virion morphogenesis, while the K7 coding sequence, but not HBc-K7 itself, is indispensable, as part of the RNA polyadenylation signal, for HBV RNA production from cccDNA. Our results provide novel insights regarding the role of the conserved lysine residues on HBc, and their coding sequences, in viral replication, and should facilitate the development of antiviral drugs against the HBV capsid protein.


Assuntos
Substituição de Aminoácidos , Sequência Conservada , DNA Circular , Antígenos do Núcleo do Vírus da Hepatite B , Vírus da Hepatite B , Hepatite B , Lisina , Proteínas do Core Viral , Sequência de Aminoácidos , Sequência Conservada/genética , DNA Circular/biossíntese , DNA Circular/genética , DNA Circular/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Hepatite B/virologia , Antígenos do Núcleo do Vírus da Hepatite B/química , Antígenos do Núcleo do Vírus da Hepatite B/genética , Antígenos do Núcleo do Vírus da Hepatite B/metabolismo , Vírus da Hepatite B/química , Vírus da Hepatite B/genética , Vírus da Hepatite B/crescimento & desenvolvimento , Vírus da Hepatite B/metabolismo , Humanos , Lisina/genética , Lisina/metabolismo , Mutação , Nucleocapsídeo/metabolismo , Poliadenilação/genética , RNA Viral/biossíntese , RNA Viral/genética , Proteínas do Core Viral/química , Proteínas do Core Viral/genética , Proteínas do Core Viral/metabolismo , Vírion/crescimento & desenvolvimento , Replicação Viral/genética
20.
J Virol ; 96(13): e0058522, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35862693

RESUMO

The biogenesis of covalently closed circular DNA (cccDNA) from relaxed circular DNA (rcDNA) is essential for chronic hepatitis B virus (HBV) infection. Different host DNA repair proteins are involved in the conversion of rcDNA to cccDNA. Here, we reported that the DNA repair factor poly(ADP-ribose) polymerase 1 (PARP1) is engaged in HBV cccDNA formation. PARP1 depletion remarkably impaired HBV replication and cccDNA synthesis. Inhibition of PARP1 poly (ADP-ribosylation) activity by olaparib suppressed cccDNA synthesis both in vitro and in vivo. Specifically, the early stage of cccDNA reservoir establishment was more sensitive to olaparib, suggesting that PARP1 participated in de novo cccDNA formation. Furthermore, PARP1 was activated by recognizing the rcDNA-like lesions directly and combined with other DNA repair proteins. The results presented proposed that the DNA damage-sensing protein PARP1 and poly(ADP-ribosylation) modification play a key role in cccDNA formation, which might be the target for developing the anti-HBV drug. IMPORTANCE The biogenesis and eradication of HBV cccDNA have been a research priority in recent years. In this study, we identified the DNA repair factor PARP1 as a host factor required for the HBV de novo cccDNA formation. HBV infection caused PARylation through PARP1 in Huh7-NTCP cells, primary human hepatocytes, and human-liver chimeric mice. We found that PARP1 could directly bind to the rcDNA lesions and was activated, PARylating other DNA repair proteins. We address the importance of PARP1-mediated PARylation in HBV cccDNA formation, which is a potential therapeutic target for chronic hepatitis B.


Assuntos
DNA Circular , Hepatite B , Poli(ADP-Ribose) Polimerase-1 , Animais , Reparo do DNA , DNA Circular/genética , DNA Circular/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Hepatite B/virologia , Vírus da Hepatite B/genética , Humanos , Camundongos , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Provírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...